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Abstract—We investigate the percolation connectivity of wireless
ad hoc networks with directional antennas (called DIR networks).
One of major concerns is to derive bounds on the number of
edge-disjoint directed paths (or highways). However, it is non-
trivial to obtain bounds on the number of directed highways
in DIR networks since the conventional undirected percolation
theory cannot be directly used in DIR networks. In this paper,
we exploit the directed percolation theory to derive bounds on
the number of directed highways. In particular, we make new
constructions in bond directed percolation model. We show that

with high probability there are at least Ω(
√
n

log log
√
n
) directed

highways in a network with n nodes, which is much tighter than
the existing results in DIR networks.

I. INTRODUCTION

The connectivity of wireless networks has received exten-

sive research attentions recently [1]–[3] since it is one of the

most important measures of the network reliability. Besides,

the network connectivity is necessary to ensure the network

is fully-connected so that each source node can successfully

communicate with its destination node through multi-hop

transmissions. In the fully connected wireless networks, it was

shown in [4] that each source-destination pair can achieve a

throughput of the order Θ( 1√
n logn

), where n is the number of

nodes in the network. The per-node throughput is significantly

decreased as the number of nodes increases. One major reason

lies in the interference caused by multiple nodes that are

simultaneously contending for the same wireless medium.

Essentially, the full-connectivity of the whole network also

pays for the cost of the increased interference as implied

in [4], [5]. As suggested in [5], a higher throughput of the

order Θ( 1√
n
) is achievable if the full-connectivity requirement

is slightly loosened such that most of nodes in the network

are connected by the giant component forming the backbone

highways (in other words, the network “percolates”). Then,

the information will be conveyed through the highways in

the multi-hop manner. However, most of these studies only

consider wireless networks consisting of wireless nodes, each

of which is mounted with an omni-directional antenna that can
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cause high interference. We call such wireless networks using

omni-directional antennas as OMN networks.

In contrast to an omni-directional antenna, a directional

antenna can concentrate the radio signal to certain directions

so that the interference to other undesired directions can

be mitigated. Many recent studies such as [6]–[11] have

shown that applying directional antennas instead of omni-

directional antennas to wireless networks can greatly improve

the throughput capacity as well as the network connectivity.

We call such wireless networks using directional antennas

as DIR networks. In particular, a DIR network can achieve

the per-node throughput of Θ( [G(d)]2√
n logn

) as shown in [11],

where G(d) is the antenna gain factor of a directional antenna.

However, most of these studies [6]–[11] only investigate

the full-connectivity of the network, which is an expensive

requirement as shown in previous studies of OMN networks

[4], [5]. To the best of our knowledge, only one of most recent

studies addressed the percolation connectivity of DIR networks

[12]. Specifically, it is shown in [12] that there are Ω(
√
n

log
√
n
)

highways needed to keep the percolation connectivity, and thus

the throughput of a DIR network is Θ( [G(d)]2√
n log

√
n
). It is obvious

that Θ( [G(d)]2√
n log

√
n
) < Θ( [G(d)]2√

n logn
) since log

√
n has the higher

order than
√
logn, implying that the throughput in [12] is even

lower than the previous one in [11]. The main reason is that

the derived bounds on the number of highways in [12] are

not quite tight as suggested from the empirical results in [12].

Therefore, it is the purpose of this paper to obtain a tighter

bound on the number of highways in a DIR network. However,

it is non-trivial to study the percolation connectivity of DIR

networks since the previous results in OMN networks cannot

be directly applied to DIR networks (e.g., the dual graph [13]).

In this paper, we investigate the percolate connectivity of

DIR networks. We extend the approach in [12] and obtain a

tighter bound on the the number of highways in a DIR network

than that in [12]. In particular, we have the following major

findings:

• We find that in a random extended network with n nodes,

there are Ω(
√
n

log log
√
n
) highways crossing the network

area from left to right. Our derived bounds are tighter

than the existing results in [12].



TABLE I
SUMMARY OF OUR WORK

Types of Networks # of highways in Bn

OMN networks [5] Ω(
√
n)

DIR networks in [12] Ω(
√

n

log
√

n
)

DIR networks in this paper Ω(
√

n

log log
√

n
)

• We also find that those Ω(
√
n

log log
√
n
) highways can be

grouped into O(
√
n

log
√
n
) disjoint sets, each of which

has Ω( log
√
n

log log
√
n
) highways. These highways are almost

straight and they do not wiggle (or swivel) more than

Ω(log
√
n).

The rest of this paper is organized as follows. We summarize

our main findings in Section II. Section III presents the antenna

models and the percolation theory. We then derive the main

results on the number of highways in Section IV. Finally,

Section V concludes this paper.

II. MAIN RESULTS

Before presenting our main results, we first introduce the

network model and notations used in this paper. We investigate

the connectivity of large scale DIR networks in which the

number nodes n tends to infinity. There are two types of

network settings to achieve this goal: (a) extended networks

in which the node density is kept constant and the area

is increased to infinity; (b) dense networks in which the

area is kept constant while the node density is increased to

infinity. Extended networks and dense networks are widely

adopted in the literature [4]–[6], [10]–[12]. Besides, in real-life

applications, the results derived under extended networks can

be easily applied to dense networks [5] . Thus, we construct

a random extended network by placing nodes according to a

Poisson point process of unit density (i.e., the density λ = 1)

on the plane. We then consider the network in the square

Bn = [0,
√
n]× [0,

√
n] with area n.

A. Summary of our results

The main goal of this paper is to derive the number of

highways in the network area Bn. These highways can form

the backbone of the network, which can be used to carry

information across the network with a constant rate in the

multi-hop manner. In particular, we denote by N→
x,y(x) the

number of edge-disjoint left-to-right directed paths in an area

x × y(x), where y(x) is a function of x. We also denote by

P{e} the probability of event e. We then have the following

results on N→
x,y(x).

Theorem 1: For all κ > 0, there exists δ > 0 such that

lim
n→∞

P{N→√
n,κ log

√
n ≤ δ log

√
n

log log
√
n
} = 0.

The proof of Theorem 1 will be given in Section IV.

Theorem 1 implies that there exist at least Ω( log
√
n

log log
√
n
)

edge-disjoint left-to-right directed paths across an area of√
n× κ log

√
n and each of these paths will not wiggle more

than log
√
n. Theorem 1 can be easily extended to the whole

network area with
√
n× ζ

√
n (ζ > 0). In particular, we have

Corollary 1: In an extended network with
√
n× ζ

√
n and

ζ > 0, there exists ξ > 0 such that

lim
n→∞

P{N→√
n,ζ

√
n ≤ ξ

√
n

log log
√
n
} = 0.

The proof of Corollary 1 will also be given in Section IV.

Corollary 1 implies that there exist at least Ω(
√
n

log log
√
n
) edge-

disjoint left-to-right directed highways in the whole network.

If these highways are used to convey information, then the

throughput capacity of a DIR network will be Ω( [G(d)]2√
n log log

√
n
),

which is even higher than the existing result, i.e Θ( [G(d)]2√
n logn

) in

[11]. Although our results are promising in deriving a higher

throughput capacity, it is non-trivial to derive the throughput

capacity since it requires many new proving techniques (e.g.,

directed scheduling schemes and directed routing schemes),

which is left as a future work.

We summarize our results by comparing with the previous

results in Table I. As shown in Table I, a DIR network with n

nodes under our derivation has at least Ω(
√
n

log log
√
n
) highways,

which is much higher than that of DIR networks derived in

[12] and is quite close to that of OMN-networks.

B. Overview of Our Approach

Let us have a glance at our approach used to prove Theorem

1 and Corollary 1. In particular, we construct a mapping from

the directional transmissions in DIR networks to the directed

bond percolation model. The connectivity of a directed lattice

in the directed bond percolation model represents the connec-

tivity of a DIR network. Thus, our study is concentrated on the

connectivity of directed lattices. Let m =
√
n. To simplify our

analysis, we assume that logm, log logm, m
logm and m

log logm
are integers (note that our results can also be easily extended to

the non-integer cases like [5]). The main idea of our approach

is described as the following steps (details will be presented

in Section IV):

(1) We construct a directed lattice L∗
x,y(x) by using a similar

approach to [12], where ∗ means the constructed lattice.

(2) We divide the whole network area into m
κ logm horizontal

rectangles, each of which is a directed lattice as con-

structed in Step (1).

(3) We decompose L∗
x,y(x) constructed in Step (1) into a

set of directed sub-lattices. After the decomposition, we

derive the percolation probability of each sub-lattice.

(4) We combine the percolation probability of each sub-

lattice together and prove that there exist at least δ logm
log logm

edge-disjoint left-to-right paths in each rectangle con-

structed in Step (2).

Comparisons between our approach and that in [12]

Our construction in Step (1) is similar to [12]. The key

differences between our construction and that of [12] lie in

Steps (2) - (4). In particular, we investigate the percolation

probability within a rectangle with size m×κ logm in contrast

to that with size m × αm in [12]. Second, we choose the
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different construction of sub-lattices with the smaller portion

of isomeric bits than that in [12]. As a result, we have the

larger number of sub-lattices than that of [12].

III. MODELS AND PRELIMINARIES

In this section, we present the antenna model and some

preliminary results in the directed percolation theory.

A. Antenna model

An antenna is a device that is used for radiating/collecting

radio signals into/from space. An omni-directional antenna,

which can radiate/collect radio signals uniformly in all direc-

tions in space, is typically used in conventional wireless ad

hoc networks. Different from an omni-directional antenna, a

directional antenna can concentrate transmitting or receiving

capability to some desired directions so that it has better

performance than an omni-directional antenna. To model the

transmitting or receiving capability of an antenna, we often use

the antenna gain to represent the directivity of an antenna. The

antenna gain of an omni-directional antenna is assumed to be

1 within 2π since it radiates the radio signal uniformly in all

directions, as shown in Fig. 1(a). Similar to the recent studies

[11], [12], we assume that the antenna gain of a directional

antenna is within a specific angle φ (also called the beamwidth

of the antenna). The antenna gain within φ is assumed to G(d)
(greater than 1) and the gain outside φ is assumed to be 0. At

any time, the antenna beam can only be pointed to a certain

direction, as shown in Fig. 1(b).

B. Directed Percolation Theory

Generally, we consider a region with area x×y(x), in which

nodes are randomly distributed according to a 2-D Poisson

process as assumed in Section II of unit density (density λ =
1). We then review the directed percolation theory, which will

be used to construct the highway systems in DIR networks.

The undirected percolation theory can be found in [5].

In contrast to OMN-networks, there are only directional

transmissions in DIR-networks in which the undirected per-

colation theory does not apply. In a DIR-network, node Xi

can establish a link with node Xj if and only if their antenna-

beams cover each other. In this paper, we assume that each

node has its neighbor’s location information so that it can point

its antenna beam to any of its neighbors. Once the antenna

beams of the transmitter and the receiver are pointed to each

other, they are locked until the transmission is completed [8].

In DIR-networks, the directed (oriented) percolation theory

has been used to construct highways [12]. We consider a

y(x)

x

Fig. 2. Directed lattice

directed lattice Lx,y(x) in an area x × y(x), as shown in

Fig. 2. Note that in the directed lattice Lx,y(x), the di-

rection of a directed link is either rightwards or upwards.

We have the directed percolation probability θdir defined as

θdir(pd) , P{v0 → ∞}, where {v0 → ∞} is the event that

v0 is connected to an infinite connected component. Similarly,

we denote by p
∗bp
d the critical threshold of pd. The formal

definition of pd will be given in Section IV.

As shown in [12], [14], [15], many results of the undirected

percolation theory cannot apply for directed lattices. For exam-

ple, it is shown in [14], [15] the dual graph of the undirected

percolation theory does not apply for directed lattices. Thus,

we have to use some new results from the directed percolation

theory. In particular, we show as follows one fundamental

result of the directed percolation theory, which will be used

to construct the directed highway systems in Section IV.

Lemma 1: [14], [15] The critical threshold in a directed

bond model is bounded by 1
3 ≤ p

∗bp
d ≤ 2

3 .

IV. CONSTRUCTION OF HIGHWAY SYSTEMS WITH

DIRECTED PERCOLATION THEORY

In this section, we will describe our construction of highway

systems in a DIR network.

A. Mapping to Bond Directed Percolation Model

In our construction as shown in Fig. 3(a), there are three

types of directed links: (1) the horizontal link (i.e., the blue

links), (2) the downward slant link lII (i.e., the green links)

and (3) the upward slant link (i.e., the red links).

Fig. 3(b) zooms in the construction of the three links. In

particular, we consider the antenna beamwidth φ ≤ π. In our

construction (as shown in Fig. 3(b)), there are three types of

triangle cells: CI , CII and CIII corresponding to the blue

shaded area, the red one and the green one, respectively. Cells

CI , CII and CIII contain three types of links - horizontal

link lI , downward slant link lII and upward slant link lIII ,

respectively. A link in a cell is enabled if and only if a node

lies in the cell. Similar to [12], we let the area of CI to be

equal to that of CII and that of CIII . We denote the area of

cells CI , CII and CIII by AI , AII and AIII , respectively.

Specifically, we have

A = AI = AII = AIII =
h · w
2

− 1

2
· h · h

tan φ
2

where h, w and φ are given in Fig. 3(b) and the above equation

can be easily obtained with the simple geometry calculation.
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Without loss of generality, we let tan φ
2 = h

w/2 . Then, A =
h·w
2 − h·w

4 = h·w
4 . Thus, we have the probability that a link is

enabled as follows: pd , 1− e
1
4
hw.

We appropriately set the directional transmission range

rd ≥
√
4w2 + h2 such that a node can transmit to any node

in its three neighboring cells as shown in Fig. 3(b).

We then divide the whole network area into m
κ logm horizon-

tal rectangles (as shown in Fig. 4), each of which is denoted by

R1
m, R2

m, . . . and R
m

κ log m

m , respectively. Each of the rectangles

has a size m× κ logm.

Next, we will prove that we can properly choose pd and

pd > p
∗bp
d such that there are Ω( m

log logm ) paths across

the network area from left to right. These paths can be

grouped into disjoint sets, each of which has Ω( logm
log logm ) paths

contained in a rectangle of size m× κ logm.

B. Percolation Probability of Sub-lattices

We first have the two notations for lattice L∗
x,y(x) as follows:

• {L∗→
x,y(x)}: the event that there exists a left-to-right di-

rected path in directed lattice L∗
x,y(x).

• N∗→
x,y(x): the number of edge-disjoint left-to-right paths in

directed lattice L∗
x,y(x).

We then define sub-lattice Lb
m,log(m) of lattice L∗

m,log(m),

where we use a bit-string b to specify each of these sub-

lattices. In particular, bit-string b represents the orientations of

the slant links (not horizontal links). Note that b has a length

of m. Specifically, in sub-lattice Lb
m,log(m), the orientations

of slanted links in the j-th rightmost column are specified

by the j-th rightmost bit in b. In bit-string b, the ‘1’ in the

j-th bit means the upward slant links in column j and the

‘0’ in j-th bit means the downward slant links in column j.

Fig. 5(a) shows an example of sub-lattice Lb
m,log(m) in which

there are three ones in bit-string b. Thus, all the slant links in

the corresponding columns are upward (i.e., the red links Fig.

5(a)). We then define a sequence of J = m
log logm m-bit-strings

(notice that J is an integer), denoted by (b0, b1, · · · , bJ)),
which are shown as follows.

b0 = (000 · · · 00000000
︸ ︷︷ ︸

m

)

b1 = (000 · · · 00 11 · · · 1
︸ ︷︷ ︸

log logm

)

· · ·

bJ = ( 11 · · · 1
︸ ︷︷ ︸

log logm

· · · 00000)

m

log mκ
1
mR

2
mR

log

m

m

mR κ

Fig. 4. The network area is divided into m
κ logm

horizontal rectangles.

where bi is an all-zero bit-string except for the (i −
1) log logm-th bits to the i log logm-th bits that are ones and

i = 0, 1, · · · , J . We then define a sequence of J directed

sub-lattices (Lb0
m,logm, Lb1

m,logm, · · · , LbJ
m,logm), where the i-

th sub-lattice is specified by bit-string bi.

Next, we derive the probability that there exists a left-

to-right path in each of the above sub-lattices. Denote by

{Lbi→
x,y(x)} the event that there exists a left-to-right directed

path in sub-lattice Lbi
x,y(x). We then have the following lemma.

Lemma 2: For each bit-string bi, if pd > p
∗bp
d , then for any

m and for some constant ǫ > 0, we have

P{Lbi→
m,logm} ≥ ǫ (1)

Proof: We present a proof of the lemma in Appendix A.

We denote by P{L∗→
m,logm} the probability that there exists

a left-to-right directed path in the directed lattice L∗
m,logm. We

next bound on the probability P{L∗→
m,logm}. We first denote by

{Lbi→
m,logm} the complementary event of event {Lbi→

m,logm}. In

particular, P{Lbi→
m,logm} = 1−P{Lbi→

m,logm}. We then have the

following lemma on the bound of the conditional probability.

Lemma 3: Denote by P{Lbi→
m,logm|Lb0→

m,logm, · · · , Lbi−1→
m,logm}

the conditional probability of P{Lbi→
m,logm} given the events

{Lb0→
m,logm, · · · , Lbi−1→

m,logm}. We have

P{Lbi→
m,logm

|Lb0→
m,logm

, · · · , L
bi−1→
m,logm

} ≤ P{Lbi→
m,logm

}+
logm · plog logm

d

P{L
bi−1→
m,logm

}
(2)

Proof: We present a proof of the lemma in Appendix B.

Lemma 3 implies that P{Lbi→
m,logm|Lb0→

m,logm, · · · , Lbi−1→
m,logm} →

P{Lbi→
m,logm} as m → ∞. We then apply this result and obtain

the following corollary to bound the probability P{L∗→
m,logm}.

Corollary 2: If pd > p
∗bp
dir , P{L∗→

m,logm} → 1 as m → ∞.

Proof: First, we have

P{L∗→
m,logm} ≤ P{Lb0→

m,logm ∩ · · · ∩ LbJ→
m,logm}

= P{Lb0→
m,logm} · P{Lb1→

m,logm|Lb0→
m,logm} · · ·

·P{LbJ→
m,logm|Lb0→

m,logm, · · · , LbJ−1→
m,logm} (3)
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Then, by applying the results of Lemma 3 to RHS of

Inequality (3), we have

P{L∗→
m,logm

} ≤
J∏

i=0

(P{Lbi→
m,log m

}+
logm · plog logm

d

P{L
bi−1→
m,logm

}
), (4)

where J = m
log logm .

Then, by Lemma 2 and m → ∞, we have

P{L∗→
m,logm

} ≤ (1− ǫ+
logm · plog logm

d

ǫ
)

m
log log m → 0 (5)

C. Proof of Theorem 1 and Corollary 1

We now can prove Theorem 1 by applying Lemmas 2-3 and

Corollary 2.

Proof of Theorem 1: As shown in [5], [12], [13], for the

number of left-to-right paths in an x × y(x) lattice, we have

that for p > 0,

Pp{N↔
x,y(x) ≤ ρ} ≤ (

p

p− p′
)ρ · (1 − Pp′{R↔

x,y(x)}) (6)

for any p > p′, where Pp is the probability measure that a

link is enabled in the underlying lattice with a probability p.

Inequality (6) is based on the property of increasing event

{R↔
x,y(x)} for an undirected lattice Rx,y(x) (see [5]). This

inequality can be also applied to directed lattice L∗
x,y(x) since

{L∗→
x,y(x)} is also an increasing event. In particular, we have

that for any pd > p′d,

Ppd
{N→

x,y(x) ≤ ρ} ≤ (
pd

pd − p′d
)ρ · (1− Pp′

d
{L∗→

x,y(x)}) (7)

We now consider an m× κ logm lattice (κ > 1). Applying

to Inequality (7), we then have

Ppd
{N→

m,κ logm ≤ ρ} ≤ (
pd

pd − p′d
)ρ · (1 − Pp′

d
{L∗→

m,κ logm})
(8)

We next generate Lemma 2 as follows.

Ppd
{Lbi→

m,κ logm} ≥ 1− (1− ǫ)κ

Similar to the proof of Corollary 2, we have

1−Pp′

d
{L∗→

m,κ logm} ≤
(

(1−ǫ)κ+
logm · p′ log logm

d

ǫ

)
m

log log m

Substituting ρ = δ logm
log logm and 1 − Pp′

d
{L∗→

m,κ logm} into

Inequality (8), we have

Ppd
{N→

m,κ logm ≤ δ
logm

log logm
}

≤ (
pd

pd − p′d
)δ

log m

log log m ·
(

(1− ǫ)κ +
logm · p′ log logm

d

ǫ

)
m

log log m

(9)

We can choose p′d such that pd > p′d > p
∗bp
d . Then, when

m → ∞, it is always possible to choose a sufficient κ such

that the RHS of Inequality (9) approaches 0.

We now prove Corollary 1.

Proof of Corollary 1: As shown in Section IV-A, there are
m

κ logm horizontal rectangles. Since each rectangle contains

at least Ω( log
√
n

log log
√
n
) edge-disjoint left-to-right highways as

proved in Theorem 1), we then combine the bounds on the

number of highways in each of the
√
n

κ log
√
n

rectangles and we

then can have the bound on the total number of edge-disjoint

left-to-right highways, which is Ω(
√
n

log log
√
n
).

V. CONCLUSION

In this paper, we investigate the percolation connectivity

of DIR networks. In particular, we derive the bounds on the

number of highways in DIR networks. Specifically, we find

that there exist at least Ω(
√
n

log log
√
n
) edge-disjoint paths in a

DIR network with n nodes and each of these paths will not

wiggle too much (more than log
√
n). Our results can be used

to derive the throughput capacity of a DIR network, which is

left as a future work.
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APPENDIX A

Proof of Lemma 2: We prove this lemma by using a similar

approach to [12]. First, we consider sub-lattice Lb0
m,logm. It is obvious

that sub-lattice Lb0
m,logm is fully contained in the conventional di-

rected lattice L2m−1,m. This is because sub-lattice Lb0
m,logm consists

only upward slant links and horizontal links (we can easily obtain this
by replacing all the green downward links by the red upward links
in Fig. 5(a)). Besides, it is obvious that P{L2m−1,m} > 0 implies

that P{Lb0→
m,logm} > 0. Then, by Lemma 1, we have θbpdir(pd) > 0,

i.e., P{L2m−1,m} > 0 for any m when pd > p∗bpdir .

We then consider sub-lattice Lbi
m,log m where i > 0 and i ≤ J .

There are log logm bits different from b0, which only counts for a
very small portion among m bits. When m → ∞, the limitation of
the fraction limm→∞

log logm

m
= 0, implying that the small portion

of different bits has no impacts on the percolation. Therefore, we

have P{Lbi→
m,logm} > 0.

APPENDIX B

Proof of Lemma 3: We also use a similar approach to [12] to
prove the result though we have a more rigid proof in this paper
compared with [12]. We denote by sub-lattice Lsi

log logm,log m in

which the first log logm columns that sub-lattices Lbi
m,logm and

L
bi−1

m,logm differ, where si is the first log logm bits that bits bi and
bi−1 differ (we count bits from the rightmost). Figs. 5 (a), (b) and

(c) show sub-lattices Lbi
m,log m, L

bi−1

m,log m and si, respectively. We
then let Y the event that there exists a row of log logm horizontal
enabled links in sub-lattice Lsi

log logm,logm. We also denote by Y the
complimentary event of event Y . We then have

P{Lbi→
m,log m|Lbi−1→

m,logm}

= P{Lbi→
m,log m ∩ Y |Lbi−1→

m,log m + P{Lbi→
m,logm ∩ Y |Lbi−1→

m,log m}

≤ P{Lbi→
m,logm ∩ Y |Lbi−1→

m,log m ∩ Y + P{Lbi→
m,log m ∩ Y |Lbi−1→

m,log m}(10)

In the last inequality of Eq. (10), we let C1 = P{Lbi→
m,log m ∩

Y |Lbi−1→
m,logm ∩ Y } and C2 = P{Lbi→

m,log m ∩ Y |Lbi−1→
m,log m}. We next

analyze component C1 and component C2 as follows.
Component C1:

Suppose that there exists no such a row of horizontal enabled
links in sub-lattice Lsi

log logm,logm, then any path in sub-lattice

L
bi−1

m,logm must traverse at least one upward slant links in sub-lattice

Lsi

log logm,logm and any path in sub-lattice Lbi
m,logm must traverse

at least one downward slant links in sub-lattice Lsi

log logm,log m.

Therefore, events {Lbi−1→
m,log m} and {Lbi→

m,log m} are independent under

event Y since the paths in the two sub-lattices must traverse at least
one different links. Thus, we have

P{Lbi→
m,logm ∩Y |Lbi−1→

m,log m∩Y } = P{Lbi→
m,log m∩Y } ≤ P{Lbi→

m,log m}

Component C2:
Suppose that there exists a row of horizontal enabled links in sub-

lattice Lsi
log logm,logm. Notice that sub-lattices L

bi−1

m,logm and Lbi
m,logm

are identical with the exclusion of sub-lattice Lsi

log logm,logm. Hence,

events {Lbi−1→
m,log m} and {Lbi→

m,logm} are positively correlated. Then,
we have

P{Lbi→
m,logm∩Y |Lbi−1→

m,log m} ≤ P{Y |Lbi−1→
m,log m} ≤ P{Y }/P{Lbi−1→

m,log m}

Notice that P{Y } ≤ logm · plog logm

d , which is obtained by the
union bound of logm rows and the probability that all log logm
horizontal links in a row are enabled is plog logm

d .
After integration of the analysis of component C1 and component

C2, we have

P{Lbi→
m,log m|Lbi−1→

m,log m} ≤ P{Lbi→
m,logm}+ logm · plog logm

d

P{Lbi−1→
m,logm}

(11)

To simplify the following analysis, we define
logm·plog log m

d

P{L
bi−1→

m,log m
}

as

f(m). Then, Inequality (11) can be rewritten as

P{Lbi→
m,log m|Lbi−1→

m,log m} ≤ P{Lbi→
m,log m}+ f(m) (12)

We then times P{Lbi−1→
m,log m} to LHS and RHS of Inequality (12),

respectively. Then we have

P{Lbi→
m,log m ∩ L

bi−1→
m,logm} ≤ P{Lbi−1→

m,logm} · (P{Lbi→
m,logm}+ f(m))

(13)

Since P{Lbi−1→
m,logm} = 1− P{Lbi−1→

m,logm}, then Inequality (13) can
be rewritten as

P{Lbi→
m,logm∩Lbi−1→

m,log m} ≤ (1−P{Lbi−1→
m,log m})·(P{Lbi→

m,log m}+f(m))
(14)

Thus, we have

P{Lbi→
m,logm ∩ L

bi−1→
m,log m}+ P{Lbi−1→

m,logm}+ P{Lbi→
m,log m} − 1

≤ P{Lbi−1→
m,log m} · P{Lbi→

m,log m}+ f(m) · P{Lbi−1→
m,log m}

That is

P{Lbi→
m,logm∩Lbi−1→

m,log m} ≤ P{Lbi−1→
m,log m}·P{Lbi→

m,log m}+f(m)·P{Lbi−1→
m,log m}

(15)

Without loss of generality, we assume that P{Lbi−1→
m,log m} ≤

P{Lbi−1→
m,logm}. Dividing LHS and RHS of Inequality (15) by

P{Lbi−1→
m,logm}, respectively, we then have

P{Lbi→
m,log m|Lbi−1→

m,log m} ≤ P{Lbi→
m,logm}+ logm · plog logm

d

P{Lbi−1→
m,logm}

(16)

We then apply the similar argument with consideration of the first
log logm bits that bi and bj differ (j < i). After that, we have the
above results.


