Yulei Wu, Yuxiang Ma, Hong-Ning Dai, Hao Wang
Computer Networks, 2020
Publication year: 2020

Abstract

5G heterogeneous networks have become a promising platform to connect a growing number of Internet-of-Things (IoT) devices and accommodate a wide variety of vertical services. IoT has not been limited to traditional sensing systems since the introduction of 5G, but also includes a range of autonomous moving platforms, e.g., autonomous flying vehicles, autonomous underwater vehicles, autonomous surface vehicles as well as autonomous land vehicles. These platforms can be used as an effective means to connect air, space, ground, and sea mobile networks for providing a wider diversity of Internet services.Deep learning has been widely used to extract useful information from network big data for enhancing network quality-of-service and user quality-of-experience. Privacy preservation for the user and network data is a burning concern in 5G heterogeneous networks due to various attacks in this environment. In this paper, we conduct an in-depth investigation on how deep learning can cope with privacy preservation issues in 5G heterogeneous networks, in terms of heterogeneous radio access networks (RANs), beyond-RAN networks, and end-to-end network slices, followed by a set of key research challenges and open issues that aim to guide future research.

@ARTICLE{YWu:ComNet20,
   author={Yulei Wu and Yuxiang Ma and Hong-Ning Dai and Hao Wang},
   journal={Computer Networks}, 
   title={Deep Learning for Privacy Preservation in Autonomous Moving Platforms Enhanced 5G Heterogeneous Networks}, 
   year={2020},
   volume={},
   number={},
   pages={},
}

Leave a Reply

Your email address will not be published. Required fields are marked *